Under-Updated Particle Swarm Optimization for Small Feature Selection Subsets from Large-Scale Datasets
نویسندگان
چکیده
Feature selection is the process of choosing a subset of features from the original larger set that are related to a certain outcome, such as disease type, dose, income, and time to event. The use of feature selection procedures is almost compulsory and complex in biology and medicine because the generation of massive datasets is nowadays common for many stateof-the-art technologies such as transcriptomics, proteomics, metabolomics, and genomics where a single, conventional, and relatively cheap experiment may yield the measurement of several thousands of features per sample (Hieter and Boguski, 1997; Sauer et al., 2005). In such cases, feature selection is used to reduce complexity and large computational costs, as well as to improve pattern recognition accuracy, data interpretability and hypothesis generation (Shen et al., 2008; Vapnik, 1998; Guyon et al., 2002).
منابع مشابه
Single Feature Ranking and Binary Particle Swarm Optimisation Based Feature Subset Ranking for Feature Selection
This paper proposes two wrapper based feature selection approaches, which are single feature ranking and binary particle swarm optimisation (BPSO) based feature subset ranking. In the first approach, individual features are ranked according to the classification accuracy so that feature selection can be accomplished by using only a few top-ranked features for classification. In the second appro...
متن کاملImproving performance for classification with incomplete data using wrapper-based feature selection
Missing values are an unavoidable problem of many real-world datasets. Inadequate treatment of missing values may result in large errors on classification; thus, dealing well with missing values is essential for classification. Feature selection has been well known for improving classification, but it has been seldom used for improving classification with incomplete datasets. Moreover, some cla...
متن کاملParticle Swarm Optimisation for Feature Selection in Classification: A Multi-Objective Approach
Classification problems often have a large number of features in the datasets, but not all of them are useful for classification. Irrelevant and redundant features may even reduce the performance. Feature selection aims to choose a small number of relevant features to achieve similar or even better classification performance than using all features. It has two main conflicting objectives of max...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملA New Binary Particle Swarm Optimisation Algorithm for Feature Selection
Feature selection aims to select a small number of features from a large feature set to achieve similar or better classification performance than using all features. This paper develops a new binary particle swarm optimisation (PSO) algorithm (named PBPSO) based on which a new feature selection approach (PBPSOfs) is developed to reduce the number of features and increase the classification accu...
متن کامل